사용자 도구

사이트 도구


web:신규서비스

신규 Web 서비스시 고려해 볼 사항

그 동안 웹서비스를 개발해오면서 많은 실수들을 했고 그럴 때마다 다시 처음 부터 시작한다면 이렇게 해보는게 좋을 것 같아…라고 생각 했던 것을 정리해 본다. Back-End 위주의 정리이다.

나의 생각은 경험이 증가하고 기술 환경이 변화함에 따라 함께 계속 변화한다.

프로그래밍 언어의 선택

  • 정적(static) 언어 혹은 타입 힌팅(type hinting)을 지원하는 언어를 선호한다.
    • IDE를 통한 Refactoring과 편리한 소스 탐색
    • Static Analysis 의 도움을 통한 버그 줄이기 가능
  • 동적(dynamic) 언어는 언어 문법의 간결성, (비 Java 계통의 경우 재시작이 필요없는 방식으로 인한) 높은 개발 생산성 덕분에 초기 개발 속도가 빠르지만 정말로 서비스가 성공해서 개발자 수가 증가하고 변화 대응을 위한 리팩토링을 할 때는 발목을 잡는 경향이 보인다. 즉, 초반은 개발을 빠르게 할 수 있지만 중 후반에서는 정적 언어보다 개발 속도가 떨어질 수 있고 버그의 가능성도 더 높아질 수 있다.
  • 최근에 나오는 정적 언어들도 기존 동적 언어들에 필적하거나 그를 능가하는 문법적 간결함을 이루어내었기 때문에 더 이상 이 부분은 동적 언어가 우위에 있다고 보기 힘들다.
  • 최근 일부 동적 언어들이 타입 힌팅(static type hinting) 기법 도입 혹은 정적 언어 transpiler 등으로 정적인 방식의 개발이 가능해 진 것도 있다. Python 3.x Type hinting TypeScript, Groovy 의 경우 선택형 정적 언어
  • Microservices 로 개발한다면 API 서버(실질적인 비즈니스 처리 담당)는 정적 언어로, Web View 컨트롤러 처리 부분은 가급적 정적 언어를 선호하긴 하겠지만 필요하다면 동적 언어로 분담시키는 방식을 사용.
  • 과도하게 개발자 풀이 적은/새로운 언어/프레임워크를 사용해서는 안 된다. 서비스 초창기에는 괜찮지만 서비스가 커질 경우 해당 언어나 프레임워크에 익숙한 개발자를 구하기 어려우며, 그로 인해 신규 유입된 개발자들이 언어/프레임워크에 대한 이해 부족으로 코딩을 잘못하게 되고 이는 개발자들의 자질/언어의 좋고 나쁨과 상관없이 해당 언어가 나쁜 언어로 매도되고, 결국 그들에게 익숙한 언어로 다시 작성하느라 서비스 발전의 발목을 잡는 요인이 된다.
  • 따라서 개발자 시장의 현실을 무시하지 말 것이며, 꼭 개발자 풀이 적은 언어를 사용해야 할 경우에는 회사 내에서 해당 언어의 교육과 올바른 언어 사용 컨벤션 정립 등에 대해서도 많은 신경을 써야 하며(이 경우 Pair 프로그래밍이 좋은 방법 같다. 하지만 폭발적으로 개발자가 증가할 경우 잘 안 통할 듯 함) 채용시에도 채용 속도를 천천히 그리고 높은 채용기준을 가지고 하는 것이 좋을 것 같다.

몽키 패치 금지

  • 동적 언어 혹은 AOP같은 유사기능 사용시 기존 기능을 런타임에 전혀 다르게 바꾸는 행동 하지 말 것. 온갖 알 수 없는 버그의 온상이 됨.
  • 또한 오픈소스 라이브러리/프레임워크/툴을 사용하다보면 부족한 기능이나 배그를 패치할 일이 생기는데 그 때 회사나 팀에서만 패치 하지 말고, 공식적으로 오픈소스에 코드를 반영시키는 것이 좋다. 나중에 해당 코드가 업그레이드 될 때 팀에서 변경한 사항이 반영이 안 된 상태라서 보안이나 기능에 구멍이 되어 버린다.

프로젝트 구성과 Microservices Architecture

  • Microservices Architecture(MSA) 로 프로젝트를 시작할 필요도 없고 스타트업의 경우 MSA 적용은 오히려 개발 생산성을 떨어뜨리게 된다. 하지만 그로부터 배운바를 적용해서 프로젝트를 구성하는 것이 좋다.
  • 프로젝트의 구성 - 단일 프로젝트 멀티 모듈. ecommerce 프로젝트가 있다고 할 때, 프로젝트를 업무 도메인 단위 모듈로 만든다. 모듈만 분화 됐을 뿐 API 호출이 아닌 실제 코드를 직접 호출하는 방식의 Monolithic Architecture로 구성한다.
    • ecommerce-project : 이커머스 프로젝트 - 크게 비즈니스, 유틸리티, 사용자 접점 세가지 종류의 모듈로 구성한다.
      • product : 상품 도메인 비즈니스 모듈
      • order : 주문 도메인 비즈니스 모듈
      • delivery : 배송 도메인 비즈니스 모듈
      • account : 사용자 계정 도메인 비즈니스 모듈
      • admin-account : 관리자(내부 사용자) 계정 도메인 비즈니스 모듈
      • email-sender : 메일 발송 모듈. 비즈니스는 아니지만 별도 분할해 두어 추후 기능 확장에 대비
      • user-web : 일반 사용자가 사용하는 웹 서비스 모듈. 위에 있는 도메인 비즈니스/유틸리티 모듈들에 의존한다.
      • user-app-api : 일반 사용자 App 에서 호출하는 API 모듈. 위에 있는 도메인 비즈니스/유틸리티 모듈들에 의존한다.
      • admin-web : 관리자 웹 서비스 모듈. 위에 있는 도메인 비즈니스/유틸리티 모듈들에 의존한다.
  • 절대 하지 말아야 할 일 : ecommerce-core 혹은 ecommerce-common 형태의 여러 도메인 비즈니스 로직을 모아둔 공통 모듈을 만들면 절대로 안 된다.
  • 다만, 비즈니스 로직이 절대로 존재하지 않는 공통 유틸리티성 모듈은 어느 정도 허용 가능하다. 하지만 이 모듈이 불필요하게 거대 의존성을 갖지 않도록 잘게 쪼개도록 한다.
  • 각각의 도메인 로직은 interface 와 구현체로 만들고 도메인 로직을 호출하는 측에서는 항상 interface 기반으로 소통한다.
  • interface 기반 도메인 로직 호출은 추후 아키텍쳐 변화나 MSA로 전환시에 그 구현체만 갈아끼우는 최소한의 변경으로 확장을 가능하게 해준다.
  • Microservices Architecture 로 가는 시점
    • 꼭 갈 필요가 없는데 MSA로 가는 것은 지양한다.
    • MSA로 가야하는 상황이 되면 위의 각 비즈니스 도메인 모듈을 하나씩 떼어 신규 프로젝트로 구성하고 Interface 구현체를 API를 호출하게 변경한다.
    • MSA 전환은 정말로 서비스가 크게 성공하고 개발자의 증가, 프로젝트 규모의 증가로 더이상 Monolithic으로는 관리가 불가능해지는 시점에 간다.
    • 기본적으로 모듈화가 잘 돼 있다면 모듈 분화가 안 돼 있을 때보다 개발자간 Ownership 논쟁이 다소 적은 편이겠지만, 개발자수가 증가하면 회의 때마다 ownership 논쟁으로 어느팀이 어디까지 해야하는지 모호해지는 시점이 온다. 이 때부터 MSA에 대한 고민이 필요해보인다.
    • 개발자간 의사 소통이 안되고 소스 코드 버전관리 시스템(VCS)에서 충돌이 너무 자주 일어나고 이는 버그로 이어지며 그에 대한 해결이 매우 어렵다면, MSA를 고려해본다.
    • 프로젝트를 실서버와 개발자 PC에서 띄우는데 너무 오랜시간이 걸려(JVM 기반의 경우) 개발 생산성이 급격히 낮아지고, 수정해야 할 코드를 찾는 시간, 배포 시간 등이 지나치게 오래 걸리는 시점이 오게 된다. 이 때는 MSA로 분할하는것이 Monolithic 보다 개발 생산성이 더 높아지게 된다.

약한 결합도 높은 응집도의 Inteface 기반 개발

  • 각각의 모듈간의 호출은 interface 기반으로 약한 결합도 높은 응집도를 유지해야 한다.
  • 여기서 interface 기반이란 단순히 Java의 interface/class 분리를 뜻하는 것이 아니라(그렇게 하는 것도 매우 좋음), 구현의 구체적 정보가 담기지 않은 설계를 의미한다.
  • 안 좋은 예 : EmailService.sendEmail(String smtpServer, String userName, String password, String subject, String contents, String from, String to)
    • 메소드에 들어간 smtpServer,userName,password
    • Email 발송에 필요한 설정 정보가 메소드 호출이 일어나는 모든 위치마다 여러 군데 퍼지게 되어 응집도가 낮은 안 좋은 설계이며
    • EmailService 의 구체적인 구현이 SMTP 서버를 통함을 밖으로 드러내어 호출자와 구현체간의 결합도를 높이게 된다.
  • 나은 예 : EmailService.sendEmail(String subject, String contents, String from, String to)
    • 호출자 입장에서 봤을 때 Email 발송에 필요한 핵심 정보만 있고 구현에 대한 정보는 없는 인터페이스로
    • 결합도가 낮아서 Email 발송방식이 추후에 API 호출 혹은 MQ 기반으로 변경되더라도 호출자측에서는 아무 변경이 일어나지 않으며
    • 응집도가 높아서 처음에는 SMTP 서버 정보가 EmailService 한 곳으로 몰리게 되고, SMTP 서버 주소가 변경 혹은 아예 MQ/API 기반으로 변경하더라도 그 변경이 EmailService 한 곳에서만 일어나게 된다.
  • 이러한 Interface 기반의 약한 결합도 높은 응집도의 코딩은 추후 서비스의 규모가 커져서 구현 방식을 바꿀 때나 Microservices Architecture로 가야할 때 훨씬 그 변경을 용이하게 해준다.
  • SQL, HTML Template 같은 근본적으로 Logic 처리를 위한 것이 아니지만 일부 코딩 요소가 들어갈 수 있는 것들이 있는데, 여기에 Logic을 넣지말고 항상 프로그램 로직은 프로그래밍 언어에서 처리하도록 한다. 비 프로그래밍 언어 요소에 넣은 Logic은 가독성/유지보수성이 매우 떨어지며 변경 대응과 디버깅이 어렵다.

계층간 침범을 하지 말것

하위 계층(Layer)에서 상위 계층을 사용하지 말라(상위 계층이 하위 계층을 침범하지 말라). 대략 다음과 같은 레이어가 있다고 할 때(위에 있을 수록 상위 레이어) 상위 레이어는 하위 레이어를 사용할 수 있지만 하위 레이어는 상위 레이어의 존재를 몰라야 한다.

  • Web Layer(Spring의 경우 Controller, Filter, Interceptor, ..)
  • Service
  • Repository
  • Domain Object

특히 모듈화가 잘 안된 프로젝트에서 저지르는 흔한 실수 중의 하나가 로그인 사용자 객체를 자동으로 도메인 객체에 넣어주고 싶다던지의 이유로 Web Layer의 객체를 Domain Object에 넣는 경우가 있는데 이렇게 하면 Batch 등 전혀 다른 목적에서 Domain Object를 사용할 때 엉뚱한 값이 주입되는 등 심각한 부작용이 발생한다.

항상 의존성은 위에서 아래로 흘러야 한다.

웹 서비스 모듈의 분화

  • Web Service 모듈의 경우 각 기능별로 Path 지정에 주의한다.
  • 초기 웹 서비스는 하나의 모듈로 만들어지겠지만 기능이 증가하면서 단일 웹 서비스 모듈로는 버티기가 힘들어 결국 이것도 쪼개게 된다. 이때 기능별로 Path를 잘 만들어 두면, 각 path 단위로 모듈을 분할할 수 있게 된다.
  • 예: user-web 모듈의 기능별 URL Path 를 다음과 같이 만들면
    • /accounts/* : 계정 로그인, 계정 관리
    • /products/* : 상품 정보 열람
    • /orders/* : 주문 처리
  • 위의 각 Path 별로 URL을 잘 분할해 두면 URL 변경 없이 user-account-web/accounts 담당, user-products-web/products 담당 , .. 등의 형태로 모듈 분할이 어느정도 쉽게 가능해지게 된다.

SSL(https)과 Domain

  • 상용 서비스는 사용자 인증 등으로 인해서 결국에는 SSL을 붙여야 한다. 다중 도메인으로 갈 경우 인증서 비용이 비싸지고 유지 보수성이 떨어지므로 단일 도메인을 유지할 수 있게 전략을 짜는 것이 좋다.
  • 기왕이면 그냥 전체 서비스를 SSL로 해버린다. 이렇게 해야 이미지나 CSS, Javascript 등이 HTTP와 HTTPS를 넘나들 때 잘못 적용되는 실수를 막을 수 있다.
    • 단, 이 경우 이미지 중심의 서비스의 경우 CDN 비용이 증가할 수도 있다.
  • 한 서비스에 고객에게 노출되는 여러개의 프로젝트를 띄울 경우 컨텍스트에 따라 도메인이 아닌 URL을 변경하는 것이 좋다. 다중 도메인 SSL 인증서는 비용적으로도 불리할 뿐만 아니라 관리도 힘들어 질 수 있다.
    • Why use www : 애플리케이션은 www 하나로 통일하고, 정적 이미지 등 전혀 다른 것들은 다른 서브 도메인으로 서빙하면 된다.
  • 도메인을 하나로 가져가면 각 프로젝트간의 Ajax 호출 시 권한 문제가 전혀 발생하지 않게 된다.
  • 외부 연동시(특히 결제?) 도메인 정보를 서로 고정하는 경우가 있는데, 이럴 때도 도메인을 단일로 유지해야 확장성에 대비가 된다.
  • 개발용 도메인을 example.dev, 통합 테스트 도메인 example.test 처럼 전혀 다른 최상위 도메인으로 끝나게 하면 실서비스와 쿠키 정보가 섞이지 않아 편해질 수 있다. 또한 실서비스에서 테스트인 줄 착각하는 일도 줄어든다.

안정성

  • SPoF(Single Point of failure)를 제거하라.
  • 어떠한 서버도 한 대만 두지 않고 항상 최소 2대로 한 쪽이 무너져도 곧바로 복구 될 수 있게 구성해야 한다.
  • 이는 개발환경에서도 마찬가지이다. 배포, 소스 저장소 등도 모두 이중화 돼 있어야 한다.

확장성 고려

  • 선형 증가 데이터와 지수적 증가 데이터를 잘 구분하여 선형 증가 데이터는 RDBMS(혹은 상황에 따라 다른 적합한 것), 지수적 증가 데이터베이스는 RDBMS sharding 혹은 NoSQL을 고민한다.
    • 초반부터 지나친 확장성 대비는 오히려 악영향을 줄 수 있는 것은 사실이지만,
    • 현재(2013) 상황으로 봤을 때 처음부터 NoSQL을 도입하는 것이 RDBMS를 도입하는 것과 비교해서 특별히 더 어렵지도 않게 되었다.
    • RDBMS 샤딩은 어려운 것은 사실이지만 NoSQL 도입은 초반 부터 고려해도 괜찮아 보인다.
  • RDBMS와 유사하게 MQ, Cache 등도 도메인별로 분할하라. 처음부터 분할하면 서버 대수가 너무 많이 늘어나게 되는데, 그 경우에는 최소한 Major 도메인에 대해서만이라도 분할하거나 혹은 물리 장비는 하나로 묶더라도 논리적으로는 분할해 두어 추후 Scale Up이 필요할 때 물리적 분할로 인한 코드 변경이 필요없게 해주는게 좋다.
  • Sharding은 꼭 필요한 경우에만 어쩔 수 없을 때 하고, 선형적 증가 데이터라면 되도록 기능별 DB 분할을 고려하는 것이 낫다.
  • 평소에는 잠잠하다가 사용자의 폭발적 업데이트가 발생할 가능성이 있는 것은(클릭 횟수 카운트 같은 종류)는 Redis, memcached, CouchBase 등을 고려한다.

Primary Key는 처음부터 Long으로

  • 서비스 초창기에는 21억(Integer Max 값 근사치)에 도달하는게 불가능해 보이지만 성장기에 들어서면 21억 정도는 금방이다. 이 때 int → long 변환에는 엄청난 비용이 들며, 안정성 훼손의 요인이 된다.
  • 특히, 컨트롤이 쉽지 않은 외부 업체와의 연동에 PK 가 사용될 때는 int → long 변환시 외부 업체쪽이 처리를 하지 못해서 심각한 장애를 일으킬 수 있다.
  • 따라서 기왕이면 처음부터 주요 PK Sequence의 시작값을 절대로 Integer로는 표현할 수 없는 최소 100억 혹은 1조, 1경 같은 값으로 해서 외부 연계 시스템 등이 연동 PK를 Integer로 설계 하는 실수를 애초부터 불가능하게 하는 것이 좋아보인다.
  • 숫자 Sequence(값 증가형) PK 중에는 그 자체가 외부 노출이 되면 안되는 경우가 있다.
    • 예를들면 가입자 정보의 PK 혹은 주문정보의 PK 같은 것인데, 이것이 노출되면 가입자 수나, 현재 주문 갯수 등을 외부에 노출시키는 것이 된다.
    • 이럴 때는 PK 값을 일정 규칙에 따라 짧은 문자열로 바꿔주는 약한 변환을 해주거나,
    • 아예 PK와 함께 UUID 같은 완전 특수한 새로운 값을 Unique Index를 걸어서 생성해서 이를 Natual Key 형태로 사용하면 보안성을 강화할 수 있다.

Database / 저장소

  • RDBMS 설계시에도 비록 처음 서비스시에는 물리적으로 하나의 시스템에 올린다 하더라도 그 의미가 분할되는 테이블은 서로 다른 database에 두고 서로간의 join이 불가능한 구조로 구성한다. 그래야 나중에 서비스가 폭발적으로 성장했을 때 기능별 DB 분할이 쉬워진다. → 서로 다른 도메인 영역 Table간에는 비록 하나의 물리 DB에 있더라도 Join하지 말라. → 이는 프로젝트 모듈 구조와 비슷하게 만든다고 보면 된다.
  • SQL에서 데이터를 생성하지 말라. 예를들어 now(), password() 같은 것 사용금지. 데이터 생성/변형은 애플리케이션에서 일관되게 처리한다. 그렇지 않으면 추후 확장시 문제요소가 될 수 있다.
  • 특별한 이유가 없다면 무조건 ORM 혹은 이에 준하는 솔루션을 사용하라. DB 쿼리 튜닝보다는 ORM으로 객체지향적이고 유지보수성 높은 코드를 짜고서, Cache 등으로 거시적 튜닝을 하는 것이 좋다.
  • 저장소에 Script Code 성 데이터(Stored Procedure나 이에 준하는 것들)를 넣지 않는다.
    • 데이터와 코드의 경계가 불분명해지고, 코드의 커버리지, 히스토리(VCS) 관리, 리팩토링 등이 불가능해지고,
    • 배포 단계(develop, integration, production ..)에 따라 서로 다른 코드가 주입되기 때문에 올바른 테스트가 어려워 진다.
    • 또한 코드가 데이터 저장소에 들어가면서 production에서 실 데이터로 일부 서버만 적용하여 테스트해보거나 하는 분할 배포를 할 수가 없게 되어 production 과 동일 데이터를 사용하는 stage 환경 테스트가 불가능해진다.
  • SQL에 로직 넣지 말자. SQL에서 충분히 가능한 간단한 연산도 애플리케이션 코드에서 처리해서 최종 결과를 적절한 이름의 변수에 설정해서 넘겨줘야 코드 유지보수성이 높아진다.
  • 자연키(Natural Key)를 주키(Primary Key)로 사용해서는 안 된다. 가급적 인공키(Surrogate Key)를 PK로 사용한다.
    • 자연키는 그 “자연적 속성상 변화에 취약하다”. PK는 변하면 안된다. 자연키가 변하는 예로..
    • 주민등록번호는 중복이 없을 것 같지만 동일 주민등록번호를 가진 사람이 존재할 수 있고, 중간에 법규가 바뀌어서 DB에 주민등록번호를 저장할 수 없게 되었다.
    • 도서 ISBN, 우편번호(6자리 → 5자리) 등도 바뀌게 되었다.
  • 비록 인공키를 PK로 사용하더라도 자연키를 Unique로 지정하고, 해당 자연키를 조회의 기본요소로 사용해도 된다. 예를들면 사용자정보가 있을 때 숫자가 PK라 하더라도 실제 조회조건으로는 email 같은 중복 불가능한 Unique Key를 사용할 수 있다. 특히 개발환경과 운영환경이 공유하는 데이터의 경우 인공키를 조회 조건키로 사용하면 insert 순서에 따라 서로 PK 값이 달라져서 불편하다. 이 때는 해당 row를 나타내는 일종의 자연키(게시판을 예로들면 게시물 제목)를 만들어 조회 키로 사용하면 개발과 운영에서 동일 조회키를 사용할 수 있게 된다.
  • 돈/가격 정보는 가급적 number(BigDecimal) 로 못해도 long으로 일괄 적용한다. integer 로 할 경우 가격 overflow 에 시달리거나, 나눗셈 등의 연산에서 취약해질 수 있다.
  • 항상 올바른 타입을 사용하려고 노력한다. 날짜는 날짜 타입, boolean, 숫자 등 항상 적합한 타입을 사용해야 쓰레기 데이터를 막을 수 있다.
  • PK가 아닌 숫자값과 boolean 타입은 모두 NOT NULL로 설계한다. 그렇지 않으면 숫자 연산에 대해 0인 상태와 NULL인 상태 모두에 대해 항상 조건을 걸거나 NULL → 0 변경을 수행해야만 하게 된다. 또한 boolean도 상태가 true/false/null 세가지 상태가 되어 버린다.
  • 모든 테이블에는 insert 시간과 modify 시간을 모두 기록한다(createdAt, modifiedAt).
  • 중요 테이블의 경우 최종 수정된 내용만 가지고 있고 그에 대해 제약 조건을 모두 지키도록 설계한다. 다만, 변경시마다 중요 변경사항을 history 테이블을 따로 두어 남기도록 한다. 그래야 서비스 유지보수시 알 수 없는 오류에 대한 참고 데이터로 삼아 고객의 요구에 대해 올바로 대응 할 수 있다. history는 RDBMS 가 아니라 NoSQL로 남기는 것도 좋다.
  • 컬럼의 의미를 바꾸지 말 것. DB의 역사가 오래될 수록 컬럼의 의미를 중간에 바꾸는 경우가 있는데, 컬럼의 의미를 변경하려면 기존 데이터를 모두 마이그레이션 하던지, 새로운 컬럼을 만들어서 새로운 의미를 부여하든지 한다. 기존 데이터를 그대로 남겨둔 상태로 컬럼의 의미를 바꾸면 매핑되는 객체 구조 설계에도 문제가 생기고 쿼리 결과를 처리하는 모든 구문에 상황에 따른 조건문이 계속 추가되어 개발 부담을 가중시키게 된다.
  • DB 자체의 타입 enum 을 사용하지 말라. 또한 프로그래밍 언어 enum 을 사용할 때 절대로 순서 숫자값(ordinal)로 저장하면 안된다. 이 둘은 모두 enum 항목들의 순서 변경이 발생하는 순간 엄청난 마이그레이션을 수행해야한다. 그에 비해 성능 향상은 그리 크지 않아보인다.

사용자에게 전달하는 메시징 솔루션

  • Email, SMS, Mobile Push 등의 Messaging은 초반에는 적을 수 있으나 서비스의 증가에 따라 시스템의 부하 요소가 될 수 있다.
  • 초반에는 메시징 인터페이스를 잘 구축해 해당 인터페이스만 사용하도록 하고, 사용자 증가 등이 일어나서 웹 서버만으로는 버티기 힘들어질 때 메시징 서버를 따로 두고 기존 인터페이스는 메시징 서버를 통해 메시지를 보내도록 변경할 수 있는 준비를 해 둔다.
  • 중요한 것은 모든 메시징은 각 종류별(Email, SMS, ..)로 하나의 인터페이스만으로 구체적 구현에 관한 의존없이 소통하게 만드는 것.
  • 메시징은 보통 즉시성보다는 전송 보장성이 더 중요한 경우가 많다. 별도 서버로 구축할 때 MQ 등의 도입을 고려하는 것이 좋다.
  • MQ의 경우 전송할 메시지의 용량을 최소화 할 수 있도록 한다. 아무리 비동기로 실제 업무를 처리한다해도 MQ 메시지 전송 자체는 동기이다.
  • 다중 서버가 되면 Session 관리가 문제가 된다.
  • Session에 대한 고려가 제대로 안되면 세션에 일시적으로 저장하는 데이터를 쿠키에 다 넣다 보니 쿠키가 지저분해지고 HTTP 헤더 크기가 폭증하는 문제가 발생할 수 있다.
  • 쿠키에 안 넣더라도 불필요하게 DB를 사용하게 하여 DB에 큰 부담을 지우고 불필요해진 데이터까지 중요한 데이터베이스 공간을 차지하는 경우가 발생할 수 있다.
  • Sticky Session은 100% 신뢰하기 힘들다는게 경험적 법칙.
  • Java 서비스라면 Spring Session 프로젝트 - Spring 4.x 이상, memcached-session-manager 같은 것을 고려해 볼만 하다.
  • Cookie 생성을 중앙 관리한다. 개발자가 늘어나게 되면서 Cookie에 대해 서로 의사소통없이 마구 만들게 되다보면 Cookie 폭증으로 인해 사고가 발생한다. Cookie 에 관한 중앙 집중 관리가 되지 않으면 서비스의 크기가 커지면서 장애로 이어질 수 있다.
    • 도메인 기반 Cookie는 가급적 최소화하고 쿠키의 필요에 따라 특정 Path 에 종속되도록 만드는 것이 좋다.

최적화

  • 거시적 최적화를 먼저한다. 미시적 최척화는 유지보수성을 해치지 않고 사용자의 요구 사항을 만족시키는 선까지만 한다.
  • 성능을 측정하지 않은 최적화는 최적화 한게 아니다. 실제로 최적화의 결과를 보면 성능이 떨어진 경우가 매우 많다. 잘못된 튜닝 포인트를 잡았거나, 설정상의 오류가 있어서, 혹은 캐시 등을 붙일 경우 실제 환경에서는 Cache hit 율이 너무 낮아서 최적화가 오히려 병목이 되기 도 한다.
  • 성능 측정시, 다양한 샘플에 대한 측정과 단일 샘플에 대한 측정을 모두 해본다.
    • 예를들어 게시판 글 읽기 테스트를 한다고 할 때,
    • 아주 많은 종류의 여러글을 동시에 읽을 때의 테스트와
    • 한 건의 글을 집중적으로 읽을 때를 테스트 해본다. - 해당 게시글을 가리키는 Row의 집중적인 lock으로 인해 이 경우 성능이 떨어질 수도 있다.
  • CSS는 위로 Javascript는 아래로, 개발시에는 코딩상태 그대로, 실서비스에서는 minify 상태로.
  • 라이브러리는 별도 관리하여 전반적인 라이브러리 업그레이드가 한 군데만 고치면 될 수 있는 구조로 만들 것.
  • 이미지를 많이 사용할 경우 이미지 최적화에 대해서도 고민해야함.

캐시

  • Local 캐시는 변화가 적고, 일시적인 값 Mismatch는 상관 없고 성능이 더 중요할 때
  • 분산 캐시를 사용하면 성능은 떨어지만 expire등에 대해 전 서버가 일제히 대응이 가능해져 일관성이 보장 될 수 있다.
  • 분산 캐시 사용시에 제일 중요한 것은 내부 네트워크 망의 대역폭(bandwidth)이다. 이를 잘 분산 시킬 수 있어야 한다.
  • memcached는 데이터 저장 용량 큰 것으로 적은 대수 보다는 메모리가 작더라도 여러 대로 많이 잘게 배치 하는 것이 부하 분산 측면과 안정성에서 더 나은 것 같다.
  • JVM 언어의 경우 memcached 등이 없어도 ehcache, Infinispan, Hazelcast 등의 JVM 기반 분산/Replication 캐시를 구축할 수도 있다. 이 경우 Local Cache의 성능 분산 캐시의 일관성이라는 장점을 얻을 수도 있다. 하지만 설정 복잡도가 높아질 것이다.

이미지와 정적 리소스 서빙 시스템 image, static resources

  • CDN 같은 정적 리소스 서빙 시스템을 두자.
  • CDN이 아니더라도, 별도의 도메인에서 정적 리소스를 통합 서비하는 것이 좋다.
  • JS, CSS 등은 버저닝하여 정적 리소스 서빙 시스템에 미리 배포한다.
  • 이렇게 해야 리소스 로딩 속도가 조금이라도 빨라지고(깔끔한 HTTP 헤더와 별도 도메인으로 인한 다중 로딩 지원때문), 배포 중간에 발생하는 일시적 CSS, JS mismatch 현상을 조금이나마 줄일 수 있다(Sticky 세션 사용시 정적 리소스 미스매치 현상은 완화 가능할 수도).
  • 단, 개발시에는 로컬 개발 환경에서 정적 리소스를 로딩하고, 배포시에만 별도 서비스에 일괄 배포하여 사용한다.
  • 컨텐츠 이미시 썸네일(thumbnail)의 경우 업로드시 생성보다는 실시간 생성후 캐싱이 나아보인다.
    • 컨텐츠는 시간이 지나면 점점 액세스가 줄어든다.
    • 접근이 적은 썸네을을 삭제하는 방식으로 용량을 줄일 수 있고, 업로드 시간도 확보 가능할 것으로 보임.

HTML

  • HTML과 유사하게 꺽쇠(<>) 기반의 커스텀 태그를 사용하는 템플릿 엔진은 사용하지 말라. HTML과 템플릿 코드가 섞여보여서 유지보수성이 현저히 저하된다(JSP, Freemarker 등 쓰지 말라는 얘기).
  • HTML Escape를 기본으로 하는 엔진을 선택하라(Jade, Handlebars.js 등). 안그러면 Cross Site Scripting에 너무 쉽게 노출된다.
  • 레이아웃은 무조건 처음부터 사용하며 Layout 상속 기능을 지원하는 템플릿 엔진을 선택한다. 별도의 레이아웃 프레임워크가 필요한 상황은 피한다.
  • Logic 처리가 적은 템플릿 엔진을 선택하라. 완전히 로직 표현이 불가능한 엔진은 사실 개발하기 매우 힘들지만, 그래도 logic을 넣기 힘든 템플릿 엔진을 선택하고 로직은 애플리케이션 프로그래밍 언어 코드로 표현하게 해야 유지보수성이 높아진다.
  • 가능하면 Jade 같은 HAML류의 HTML Validation을 어기는 것이 불가능한 템플릿 엔진을 사용해야 HTML의 유지보수성이 보장된다(하지만 UI개발자들은 별로 안 좋아한다).
  • Jade/haml류가 안 된다면 가급적 HTML과 구분되는 템플릿 문법에 HTML의 정합성을 깨지 않는 Java HTML Template Engines을 사용한다(Handlebars.js, Pebble 등).

보안

  • 데이터를 암호화해 저장할 경우, Key를 소스코드에 담지 말고 별도로 담을 수 있도록 한다.
  • 암호화 Key는 수시로 바뀔 수 있어야 한다. 암호화된 데이터를 저장할 때 Key의 버전도 함께 저장하고, 암호화 코드는 Key 버저닝을 지원해야 한다.

서버 운영

  • 절대로 여러 사람이 공유하는 공용 계정으로 서버를 관리하지 말라(AWS 등 포함). 이는 치명적인 보안 사고로 이어진다.
  • 전체 공용 계정을 만들게 되면 해당 권한이 있는 디렉토리가 난장판이 되고 누가 무슨 일을 했는지도 구분하기 힘들다.
  • 서버 이름에 대한 공통 규칙을 미리 만들어놔야 한다.
    • 프로젝트 이름
    • 서버 번호는 2~3자리로 구성 : 예) xxx-01 ~ xxx-20, 혹은 xxx-001,…
    • 가상 서버와 물리 서버간의 구분
  • 내부망도 IP 주소 기반으로 운영하지 말고 Domain Name 기반으로 운영하는 것이 좋다. 가끔씩 IP 자체를 바꾸지 않으면 안되는 사태가 발생하는데 이 경우 Domain Name으로 항상 접속정보를 구성하면 DNS 서버에서만 주소를 바꿔주면 된다.
    • 이 경우 DNS Resolve 자체가 부담이 될 수 있으므로 DNS Resolve 성능 최적화에 주의할것.
  • 내부 서버간의 인증시에 IP Address 기반 인증을 하지 말고, 동적 서버 증가에 대비한 인증 수단을 마련해야 한다.
    • AWS 같은 동적 서버 증가가 가능한 상태에서 IP 기반 인증은 서비스 확장의 유연성을 떨어뜨린다.

서버 모니터링

  • 서버 모니터링 툴을 통해 초반부터 모니터링을 강화한다.
  • 서버 운영체제 상태(collectd) 뿐만 아니라 가능하면 사용하는 언어에서 제공되는 해당 언어 VM 모니터링 기능을 적극 활용한다.
  • 장애 상황시 사태파악을 빠르게 하려면 모니터링이 꼭 필요하다.

Logging

  • 항상 로깅 프레임워크(Java 계통의 경우 Slf4j)를 사용한다.
  • HTTP/HTTPS 요청은 Web Server에 의해 요청 로그가 남지만 MQ 를 통한 요청은 남지 않아 문제가 될 수 있다. MQ등 자동으로 요청 로그가 남지 않는 계통은 항상 INFO Level 등으로 실서비스에서 요청로그를 상세히 남기도록 해야 나중에 대응할 수 있다.
  • 남긴 로그는 비동기로 중안 서버로 전송하여 개발자들이 한 곳에서 편하게 모니터링 할 수 있게 해준다.
    • 동기식으로 중앙 수집할 경우 서비스가 커지거나 특정 시점에 트래픽이 몰릴 때 Logging 자체가 병목이 되어버린다.
    • GrayLog2, fluentd, Logstash, ELK Stack 등을 고려한다.

Production Server ACL

  • 운영 시스템에 대한 ACL은 개발 초기부터 망 분리 등을 통해 운영시스템에서만 접속가능하도록 하고 절대 개발자 PC, 테스트 시스템 등에서는 접속이 불가능하도록 구성한다(여기서 말하는 접속은 서버에 대한 SSH 접속이 아니라 DB,Redis,MQ 같은 시스템, API 서버 등에 대한 접속을 뜻한다).
  • 그 뒤에 필요할 경우 필요한 서버에게만 ACL을 하나씩 열어준다. ACL은 모두 막아 놓고 열어야지, 모두 열린 상태에서 막으면 개발자들이 혹시나 실수로 중요한 애플리케이션을 비 운영서버에서 돌릴경우(ACL이 되니까) 추후 ACL 제약시 문제가 될 수 있다.

배포

  • 배포 스크립트는 중앙 집중형으로 만들지 말고 프로젝트별로 독립적으로 만들어, 중앙에서 각 프로젝트의 배포 스크립트를 호출하도록 한다.
  • 중앙 집중형으로 만들면 초기에는 편하지만 프로젝트가 증가하면 관리가 어렵고 하나 고치다가 다른데 영향을 주거나 하기 쉽다. 또한 중단된 프로젝트에 관한 설정을 제거할 때도 망설이게 되어 계속 크기가 증가만 하게 된다.

Mobile App

  • 항상 최신버전을 유지할 수 있는 웹과는 달리 Mobile App은 그럴 수 없다.
  • 이는 추후 변화에 대한 대응을 불가능하게 만든다. 가급적 처음 만들 때 앱 자체에 강제 업데이트를 가능하게 만들 필요가 있어보인다. 안그러면 추후 서버 쪽 코드의 발전을 클라이언트가 못 따라가서 서버쪽에 클라이언트 버전별로 코드가 늘어나게 될 수 있다.
  • 앱의 반응성이 조금 떨어져도 상관없다면 모바일 앱은 거의 껍데기만 존재하고 웹뷰를 통한 비즈니스 처리를 고려해볼 필요도 있어보인다.

Code 품질 관리 - 정적 분석도구 도입 (Static code analysis)

  • 서비스 개발 초기부터 정적 분석도구 (java의 경우 checkstyle, PMD, findbug, js는 jslint 등)를 도입하여 코드 컨벤션을 지키도록 하는 것이 좋다.
  • 정적 분석 도구가 오류를 보고하면 CI 툴에서 빌드를 아예 실패하도록 한다. 그리고 통과 기준을 시간이 지날수록 높여간다. 기준이 낮아지는 일은 없게 한다.
  • 정적 분석도구를 통한 분석을 프로젝트가 한참 지난후에 적용하려면 매우 고통스럽고 모든 분석된 오류를 다 해결할 수 없어서 쉬운 규칙만 적용하는 경향이 생긴다. 하지만 처음부터 적용하면 별 문제가 아니다.
  • 프로그래밍 언어와 프레임워크, 라이브러리는 지속적으로 업그레이드된다. 성장하는 서비스에서 고객의 요구 사항을 만족시키기 위해서는 결국 언젠가 언어/프레임워크/라이브러리를 업그레이드 할 수 밖에 없는 순간이 온다. 그 때 안정적인 업그레이드를 보장하는 가장 나은 방법은 테스트 코드 커버리지를 100%에 가깝게 유지하는 것이다.
  • 사용중인 도구(프레임워크/라이브러리 등)의 학습 테스트도 함께 코드상에 넣어두는 것도 좋아 보인다. 테스트 코드를 리뷰하며 팀원들이 함께 학습할 수 있고 도구의 버전업시 변경 사항에 대한 인지도 쉬워진다.
  • 또한 EditorConfig 등을 통해 처음부터 코드 포맷을 통일 시킨다.

Load Balancer 설정 확인

  • DB Connection Pool, HTTP Keep-Alive Connection 등에 원인을 알 수 없는 잦은 끊김 등의 이상 동작이 발생한다면 Load Balancer(LVS, L4,L7, HAProxy, LVS, Keepalived…) 를 의심해봐야한다.
  • Load Balancer가 중간에서 설정에 의해 커넥션의 유효성 여부를 체크하고 유효하지 않을 경우, 혹은 장시간 미사용일 경우 강제로 끊어버릴 수 있는데 그 설정값이 Connection Pool의 설정과 매칭이 안되면 의도치 않은 순간에 접속이 끊길 수 있다.
  • 가장 손쉬운 확인 방법은 Load Balancer 없이 직접 커넥션을 맺고서도 동일 문제가 발생하는지 확인해 본다.

API 설계

  • API 설계시 다중건 결과를 내는 경우 Paging 기반으로 요청을 받지 말고 offset/limit 으로 요청을 받는 것이 낫다.
    • 요청자 측에서 페이징 방식으로 자기네가 알아서 감싸는 것이 쉽다. 즉, 두가지 방식을 모두 요청자측에서 결정해서 할 수 있다.
    • 다음 페이지의 존재 여부를 알고자 한다면 limit이 10이면 11개를 쿼리해서 결과가 11개가 나오면 다음페이지가 존재하고, 아니면 여기서 끝인 것으로 판단하면 된다.
  • API 의 경우 호출자에 대한 정보를 HTTP Header 등에 주입하고 로그로 자세히 남기는 것이 좋다. 이는 SQL 구문도 마찬가지 이다.
    • 호출자 서비스 이름
    • 호출자 서비스의 구체적 기능(컨트롤러 이름이나 배치 이름 등)

Single Page Application?

  • 대고객 서비스는 각자 판단하여 SPA여부를 결정한다.
  • 하지만 관리툴에는 SPA를 적용하지 말고 과거 방식으로 한다.
  • 관리툴은 가급적 UI복잡도를 낮춘다.
  • SPA는 잘 적용하면 편리하지만 제대로 하지 않으면 오히려 브라우져의 자체 UX를 해친다.
  • 관리툴은 내부 관리자들만 사용하기 때문에 개발자들이 대충만드는 경향을 보이는데 여기에 SPA를 적용하면 UX가 형편없어져서 굉장히 불편해진다.
  • 관리툴은 최대한 단순함을 유지하는 것이 낫다.

기타

  • 날짜 ↔ 문자열간 변환이 많이 필요한데, 처음부터 포맷을 결정하고 간다.
    • 날짜시간, 날짜, 시간 세가지 종류가 필요하다.
    • 가급적, 밀리초까지 포함한다. 초까지만 지정하면 추후에 밀리초를 사용할 일이 생겼을 때 매우 당황스러워질 수 있다.

참조

web/신규서비스.txt · 마지막으로 수정됨: 2017/11/22 10:01 저자 kwon37xi